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Chapter 1

DEVELOPMENT OF TECHNIQUES FOR CAVITY STUDY
FIRST ANALYSIS METHOD: A CORRELATION TECHNIQUE

INTRODUCTION

The behavior of a missile when it enters water from air
is atrongly influenced by the development of an air-filled
cavity about it (ref. (IK and (2)), which subjects the missile
to a series of changing environments., These environments can
be predicted only if detailed information 18 available
concerning the cavity configuration aad history.

The general leatures of cavity development may be
summarized as follows. The cavity is generated by a lateral
displacament of the water by the nose of the missile, and
air rushes in behird tc f11il it. Later the cavity closes off
at the water surface while it 1s still growing, and the
pressure in the cavity tends to decrease. The cavity then
moves away from the water surface, portions of it may be
separated off by "closures" or "seals," and the part of the
cavity attached to the missile suffers a continuing attrition.

In general, the cavity development may be expected to
depend on the ncse shape of the missile. This develcpment
could be studied experimentally for any particular nose
configuration, but unfortunately an infinity of shapes is
possible, The simplification of this problem is the purpose
of the present correlation technique. This correlation had
its origin in the observation that missiles designed for water
entry are generally truncated by a plane perpendicular to
the axis of the missile. Because of this "nose-flat," the
flow which forma the cavity wall leaves the nose of the
missile abruptly, and this flow pattern is generally conducive
to the generation of a well-formed cavity and to a stable
behavior,

The present study will be restricted to water entries
which are accompanie b%onliformed cavitles. It wiIl be
assumed that the traJjectory 1s reasonably straight and that
the cavity is large enough to envelop the missile completely.
The missile must not tumble, but its afterbody may have
occasional contacts with the cavity wall if these contacts
are not too violent.

The purpose of the present report is to descridve a
method for systematizing the treatment of cavity growth so
that all missiles can be regarded as belonging to a single
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family, no matter what the nose shape may be, provided that
the entry 1is well-behaved and a clean cavity 1s produced.
Parts of this method were described in reference (3).

The right cylinder will be taken as the tasic configura-
tion of the correlation technique. Pigure 1 shows that the
cavity flow about a right cylinder does not wet any portion
of such a misslile appreciably except the flat portiocn of the
nose during the '"cavity running" following water entry,
Evidently the flow from such a nose is not influenced by the
after-shape of the missile, but only by the size of the nose
truncation, and the speed, mass, and entry angle of the
missile. A similar statement may be made concerning missiles
with smaller nose flats if there 18 no appreciable wetting
of the rest of the nose,

Many missiles which generate clean cavities at water
entry have much more wetting of the nose than 1s assumed
above, This is true of spherical and ogival noses, for
example, and also of truncated noses which have flats whilch
are too small to produce a completely detached flow. All
such missiles may be treated in the same way as the right
cylinder by ascribing to each an "equivalent nose-flat
diameter." The equivalence is based on the observation
(experimentally verified in reference (1)) that missiles with
the same mass and speed, and the same drag force, generate
cavities which are reasonably identical in shape (except,
perhaps, very near the nose). Accordingly, a missile with
ogival nose will be regarded as equivalent to a right cylinder
(or a missile with some other sufficiently truncated nose) of
equal mass, and with the same drag force at the same speed.

A sphere which has a cavity drag coefficient of 0.3 is
equivalent to a right cylindera%CD=0.8) of the same mass,
whose cross-sectional area 1s three-eighths that of the sphere.

Noses whose truncations are too small to prevent wetting
of the rest of the nose will have some increase 1in drag
coefficient due to this wetting. If this increase is
appreciable, such noses should be equated to right cylinders
(or adequately truncated noses) with the same drag force.

In general, a water entry may be influenced by many
parameters such as Froude number, Reynolds number, Mach number,
missile mass, entry angle, transverse moment of inertia, and
the position of the center of gravity. We shall assume that
only three dimensionless parameters have a significant effect
on the behavior of the missile or on the shape of the cavity
during i1ts formation. These are:

a. "Effective mass" = M = m/pQ a3

2
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b. PFroude number = P = vo/(gd)%
¢c. Entry angle = 6,.

Both the effective mass and the Froude number are related to
the diameter of the nose-flat (real or equivalent) since this
1s the only length of significance during the impact phase,
The effective mass 1is the ratio of the missile's mass to the
mass of a cube of water whose edge 18 the dlameter of the flat,.

Many considerations determine and limit the validity of
the assumption that only these parameters are sgignificant.

a., Mach number in air will affect the cavity pressure
at high entry speeds. Later cavity pressures, however, will
depend principally on the conditions which exist when the
cavity closes at the water surface, and at the time of surface
closure the missile speed will have dropped far below the
entry speed.

b. T ynolds number has not been found to have appreclable
importa © for cavity fermation.

¢. Change of the gas pressure above the water without
a density change (as required by the scaling laws) has been
shown experimentally (ref. (1) and (2)) to have small effect
on cavity behaviocr, although the effect on whip may be
relatively large (ref. (h?%.

d. Moment of inertia and center-of-gravity position need
not be regarded explicitly if it is assumed that the missile
behaves stably at water entry.

e. The neglecting of accidental angles of pitch and
yaw which the model may have at water impact, and the
corresponding angular velocities, is also largely justified
by our limitation to trajectories for which the behavior is
reasonably stable,

NON-DIMENSIONAL PARAMETERS AND EQUATIONS

Because Cp=0.8 for a right cylind - during cavity
generation, we shall assume that

¢p = 0.84°/0° (1)
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for a truncated body with nose-flat diameter 4, if the flow
separates cleanly.

Missile speed, time, and path length may be non-
dimensionalized:

V=v/v; T = tvo/ﬁ; S = 8/d (2)

Here, unit length is taken as the truncation diameter, unit
time 1s the time (d/vy) required for the missile to travel

a distance equal to the truncation diameter at the entry
speed, and unit speed is the speed at entry. By use of the
non-dimensionalized quantities of equation (2), the equations
of motion

v = voe'qs; 1/v = l/v° + &t; and a8 = ln(vod.t +1), (3)

which apply to a missile acted on by only a drag force, can
be written in the form

1/V =1 + AT = 7S (4)

where A = T /10 M, so that AT and AS are respectively
proportional to T/M and S/M.

It will be seen that the equations (4) are "universal
equations" in the sense that each of the three can be
represented by a single graph of V versus S/M, V versus T/M,
or S/M versus T/M. Each should be applicable to missiles
entering water with any values of the experimental parameters
within the overall limitations of this study. Deviations
will be observed when the effect of transverse forces and
gravity become significant, or when Cp changes. It 1s easily
seen that two right cylinders of different diameters will
have the same accelerations after water entry if their Proude
numbers and effective masses are the same, with the accelera-
tion in ordinary units or in the non-dimensional units of
equation (2). Missiles with other nose shapes may be
compared similarly if their values of P and M are based on
"equivalent nose-flat diameters" derived from their drag
coefficlients,




NOLTR 63-264

SECOND ANALYSIS METHOD: CAVITY-PRESSURE ESTIMATION

Very little has been published concerning the pressure
in the water-entry cavity, although one measurement was
reported in reference 5, and the general features of the
pressure changes to be expected have been discussed (ref. (1)).

Some time after water entry, when the cavity length has
decreased to, perhaps, twice the missile lengt.., high-speed
motion pictures frequently show that the missile travels for
a short distance in an ellipsoidal cavity which has the
appearance of a rigid ellipsoidal missile moving through the
water, Such a cavity 1s shown in figure 2. Although tnis
"almost-steady" mntion persists for a short time only, the
cavity is unmistakably similar to the vented cavities which
have been studied in the water tunnel. It appears probable
that the flow at this time will approximate the flow about an
obstacle in the water tunnel, and this should make it possible
to estimate the pressure in the cavity.

Reichardt (ref. (6)) studied the shapes of cavities
produced in the water tunnel behind disks when air was fed
into the cavity to reduce the cavitation number. This
investigation was later extended by Rouse and McNown (ref. (7))
and by Eisenberg and Pond (ref, (8¥). They found that the
ratio of maximum cavity diameter to disk diameter and the
ratio of cavity length (twice the distance from the disk to
the maximum diameter) to disk dlameter, are uniquely related
to tne cavitation number,

Figure 3 shows the variation with cavitation number, 0,
of the non-dimensionalized maximum diameter and length of the
cavity (Dy/d and L/d), where d is the disk dlameter. The
measurement of one of these quantities for an "almost-steady"
cavity permits the evaluation of

- Po-Pc ()
ievz

by use of figure 3. The pressure in the cavity, p., 1is
easily found since all other quantities in equatiog (4) are
available. If both the length and diameter of the cavity
are known, two determinations of the pressure are possible,
If the two values agree well, the cavity is presumably of
the proper shape and is suited to the evaluation of g .

Experimental values of 0" (discussed in Chapter 2) were

actually obtained from the volume of the cavity. The reason
for this and the method are as follows., If different values

5
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of G are obtained from measured values of Dy/d and L/d, one
can get a mean value in various ways, If the cavity is
longer and thinner or shorter and fatter than the steady-
state cavity, it seems probable that the cavity volume would
be more nearly invariant with time than the linear cavity
dimensions. It was assumed that the cavity 1s a prolate
ellipsoid and values of volume, calculated from the data of
references (6), (7), and (8) are plotted in figurs 3. For
ease of calculation the volume 18 expressed as Dy L/d3.
This value times T/6 = 0.5236 gives the vglue which would
be obtained from an expression of the form 3-‘ﬂ"ab .

Based on the comparison of almost-steady entry cavities
with those observed in the water tunnel, some general
deductions can be made relating to the pressures to be
expected in small closed cavities. It should t = noted first
that cavities with 9 20,2 can hardly be of interest, since
their lengths (Fig. 3) would be less than 6.5 times the
diameter of the nose flat.

Near the water surface a missile must be traveling at
about 100 feet per second to generate a cavity with G =0.2
if it contains only water vapor. The speed required would
increase as the aquare root either of the ambient pressure
or of 1/0. At a depth of 34 feet a missile traveling at
100 feet per second could generate a cavity with 0 =0.2 only
if the pressure in the cavity were one atmosphere,
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Chapter 2
APPLICATION OF THE TECHNIQUES

The correlation technique described in Chapter 1 has been
applied to high-speed motion pictures which were obtained
during an earlier water-entry model program in support of
missile development. Records were available from about 200
water entries, but, for various reasons, many of the rounds
were not suitable for this analysis. Only 59 rounds were
given a complete analysis, although some data are included
from many other rounds.

Nearly all of the models used had truncated noses with
flats ranging from 0.275 to 1.00 times the full missile
diameter. Behind the truncetion, in many cases, was a conical
or ogival surface, and sometimes the flow wetted this surface
slightly.

Most of the models had body diameters of 1.570 inches
and were not provided with fins. Accordingly, they were not
hydrodynamically stable but all of the rounds included in
the study had reasonably straight trajectories and hac a
pseudo-stability, usually because of guidance by the cavity
wall, at least during the portion of the trajectory analyzed.
Eight of the entries were of models with body diameters of
approximately 1 inch and with cruciformm fins. Data for the
59 rounds which were given a complete analysis are listed
in Table 1. Entry speeds for these rounds ranged from 321
to 1600 feet per second and the angles of entry were between
L5 and 70 degrees from the horizontal. Pigure 4 is a plot
on Proude number (P) versus effective mass (M) coordinates,
indicating the values of P and M for each of the completely
analyzed rounds by an encircled point, and for the other
rounds used, by a simple point.

A large amount of information was presented for srheres
in reference (1). Some of the data obtained in that study
will be compared with the present analysis although the
entry angle was 90° (vertical) instead of the 45 to 70 degrees
of the present study. The effective mass of a sphere is
M=2,.280k, where k is the specific gravity. It does not
depend on the diameter of the sphere., Por a steel sphere
M=17.7 approximately.

The photographic records used in the present analysis

were obtained from Fairchild high-spesd cameras operating at
speeds between about 2100 and 6 frames per second. The

7
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models were launched from a 40-mm smooth-bore pcwder gun into
the Undersea Weapons Tank at NOL. This tank 18 a vertical
cylinder, 100 feet deep and S0 feet in diameter. The
adjustable gun mount is shown in figure 5.

Photographic 1ights and cameras were mounted on parallel

triangular trusses as shown in figure 6. The truss in the

1 foreground carried the two cameras in waterproof housings.

; The other truss supported the lights. These were unprotected

! incandescent bulbs designed for underwater use only. In front
of the lights was a nylon diffusing screen. Elastic ropes
were tightly stretched, one or two feet apart along the line
of fire, to serve as a reference grid. The trusse3 pivoted
about a common axis which was the same as that of the gun
mount, and were fastened together at their further ends. In
opcration the gun was adjusted to the desired entry angle,
and the trusses were oriented sc that the line of fire was
anvproximately along the center of the truss system and grid
retwork,

i Enlargements of sample frames from the high-speed photo-
graphs taken with the "first" and 'second" cameras are shown
in figure 7. The first camera gave a record of approximately
the first ten feet of the trajectory after water entry. The
second camera included a section of the trajectory about 13
to 23 feet from the entry point.

DATA REDUCTION

The use of automatic film-reading equipment was found
unsatisfactory because of variations, from frame to frame,
in the position of the image on the film area,.

Time calibration of the frames was obtained from 1000-
cycle timing marks printed on the film., Prames from the
motion pictures were projected onto white paper; the nose
positions were marked on the paper and the frame numbers
were recorded, starting at water entry. The distances of
the nose along the trajectory were then entered on punched
cards and thg distance-time data were machine-fitted to the
cubjc t = asJ + bac + ¢s + 4 for each camera separately.
Duri..g this operation the machine printed out the horizontal
and vcirtical coordinates of the nose poeition, its distance
along the trajectory, the time, the speed, the acceleration,
and the frame number. The accuracy of the position-time data
was not adequate to permit satisfactory determinations of the
drag coefficient,.

;
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Graphs of the position-time data were next plotted
separately for the two cameras, and the two graphs were then
"fitted." The fitting consisted in the determination of the
time interval between the two camera records, since the timing
marks on the two films were not synchronized and the position
data did not overlap. The two graphs were so positiloned by
trial that they could be faired together by adding an inter-
mediate curve. To improve the accuracy of this operation
three determinations were made by fitting separately, graphs
of distance, speed, and reciprocal speed, and comparing
the time intervals resulting.

Before the adoption of the technique Jjust described,
several other methods were attempted, nusing other fitting
equations, and fitting the data from both cameras to one
equation. These methods were abandoned because of the poor
quality of the fit obtained.

After the overall relation between distance and time
was available, the distance-time curve was drawn to large
scale on cross-section paper. Several frames in turn were
then projected and traced on the paper containing the distance-
time graph. The magnification was adjusted to agree with
the distance scale on the plot, and the center line of the
cavity was located at the proper time position. A graph was
then drawn of the position of the upper or base end of the
cavity. Pigures 8 to 16 are samples of the sketches just
described. Usually many more outlines were drawn than are
shown on the sketches included in this report. In addition
to the omission of some outlines to avoid confusion, some
of the cavity outlines were modified slightly in one respect.
It must be remembered that all of the entries were oblique.
The angle between the cavity axis and the surface was
approximately the entry angle, and the base of the cavity was
oblique until the cavity had pulled away from the surface.
Because the variation of entry angle hae been diaregarded,
some of the cavity bases have been drawn as though the
cavitiesc had circular symmetry near the base.

Most cavity dimension data were obtained from the
drawings just described. Cavity volume was obtained by
approximating the cavity as &8 number of right circular
cylinders.

Pigure 8 s intended to show the pattern of cavity
development behavior over the range of experimental parameters
analyzed in the present study. It has been assumed that the
cavity development can he correlated with only three param-
eters: the effective mass, M; a Froude number, P; and
the angle of entry, 9,.
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No correlation with the angle of entry was found. The
angle might be expected to affect the size of the cavity by
changing the time at which the surface seal occurs, and the
8ize and collapse behavior through the different hydrostatic
pressure due to depth at various angles. Undoubtedly, small
effects of angle were present in the data enalyzed, and large
effects would be expected under some conditions of large
angle variation. No intensive search for effects of angle
were made.

In the sketches of figures 9 to 16 the upper graphs
give the position of the nose of the missile; the ordinate
being the distance traveled from water impact. This traveling
was oblique to the water surface. Although the abscissa
serves as a reference line for measurement of the distances
after entry, the distances given are not those from the water
surface because of the obliquity. Wwhen the water surface 1s
drawn in, 1t is shown separately for each cavity outline as
an oblique line closing the rear end of the cavity and making
an angle with the abscissa. Some of the cavity outlines have
been squared off at the water surface.

The lower curve on each ot the contour graphs shows the
position of the base of the cavity. This lower end of the
cavity in the drawings is the upper end in the actual water
entry. The vertical distance between the upper and lower
curves gives the cavity length,.

DISCUSSION OF CAVITY BEHAVIOR

Figure 8 1s set up on P-M coordinate axes with plots for
13 rounds positioned at approximately the F and M values of
each water entry. Figures 9 to 16 present the same graphs
in larger size.

Some comments will be made in this section of the trends
which can be observed on figure 8 but explanations of these
trends will generally be reserved until later when contour
plots and graphs of cavity Jdata will be discussed.

The lowest values of M on figure 8 (M=11) are given by
the three rounds at the left of the figure. A small value
of M means, of course, that the missile had amall maass for a
given nose-flat diameter. These rounds with M=1l1l were right
cylinders. All had the same low maas and rapid deceleration
and they behaved similarly., Each cavity grew carrot-shaped
and closed at the water surface, and shortly thereafter a
deep closu.'e or deep seal occurred, Just before or after
thia seal, the cavity pulled away slightly from the surface,

10
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These deep closures, which occurred at points, will be called
"point closures" in this report. They represent a cavity
collapse caused by the hydrostatic pressure due to depth
outside the cavity and a lowered pressure within the cav ity
because of the cavity expansion following surface closure.

As the Proude number increases (higher speed), deep closure
and pullaway from the surface are later, and the cavities
become fatter. The upper (nose position) curves of the three
rounds shown with M=11 are almost 1dentical, as 1s predicted
by equation (4). This means that the non-dimensional distarnces
traveled were identical. The actual distances were also the
same because the unit length {the nose-flat diameter) was

the same, but trajectory points were not reiched at the same
times. At higher Froude numbers, the time unit is smaller,
giving smaller actual time intervals. This 1s due, of course,
to the higher speeds of travel,

Each column (M=constant) in figure 8 also contalins
identical distance-time (upper) graphs for the missile nose.
As M increases, the curves become higher bec:zuse of the
smaller deceleration.

There 1s a8 discontinulty in the cavity length when deep
closure occurs, because cavity length 18 interpreted to mean
the length of the cavity attached to the missile. At a
point closure the length decreases from the full cavity length
to the length which remains attached,.

If we proceed from the lower left-hand corner of figure
8 in the direction of increasing M, greater charges of
behavior are observed. The point closure which was cbserved
for Rounc 16¢ (M=11, F=200) does not occur with Round 14¢
(M=69, P=211). In the former round the cavity remained
intact until the point closure occurred and then was dilvided
into two portions., In Round 130 the base of the cavity,
after pulling away slowly from the water surface, travels
Quite rapidly toward the missile. During this motion, nc
large bubbles are broken off and left in the wake, The
cavity remaina almost intact. There i3 some entrainment of
air in the wake becsuse of the instability of the flow at
the base of the cavity but this lecaves only a traill of very
small bubbles,

Such behavior will be called a "base closure”" in this
report, even though no act.al closure occurs, to distinguish
it from other modes of cavity collapse. The change from
point to base closure may be thought of as & displacement of
the point closure back to the rear end of the cavity where
it appears only as an acceleration of the base., Figure 8
shows that the same change from point to base closur- occurs
at higher F values, when we go from M=11 to K=69,

11
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Near M=69, as we go to still higher values of F, other
changes occur. At the highest Froude number (Round 131)
there 18 a point closure, At intermediate values of P ¢
another significant change occurs. During the base closure
of Round 190 the cavity shortens but maintains a cigar-like
shape. In Round 189 (F=444), on the other hand, the cavity
becomes very thin riear the base and the c¢losure i1s from the
sides rather than frocm the base. There are other rounds in
whicn a rather long section of the cavity (not necessarily
at the base), collapses to a line almost at the same instant,
These collapses will be called "line closures" in this report.
Other striking examples of these closures will be given in
figures 36 and 38, and 1t will be shown that these are the
most violent of all observed cavity collapses,

The rounds with M values near 100 behave similarly to
those just discussed. Those at M=125 dc also, and Round 142
has a very striking line closure,

Cavity Collapse. The type of cavity collapse is shown
for various valueg of F and M on figure 17. Each point
plotted on the figure represents a separate water entry, and
the points are so placed on P versus M coordinate axes as to
indicate the values of these quantities for each round,
Point closures and base closures are shown by dots and
circles, respectively. Line closures are indicated by
crosses. The cross is drawn in a circle to indicate that
the line closure is at the base of the cavity. A simple
crogs indicates that the closure would have been judged a
point closure i1f it had occurred at a poirt and not along a
line, 'The cavities indicated as having line c¢losures were
80 Judged because the observer felt that "the closure wa-
almost simultaneous along a considerable portion of the
cavity." An attempt was made to reduce the subjectivity of
this evaluation by using a quantitative criterion, but this
was not successful and was abandoned. The dashed line on
figure 17 roughly divides the area into regions of point
closures and base closures.

It will be seen that point closures orcur predominantly
in the "northwest" portion of the plot, and base closures in

- the "southeast" portion. This is in agreement with the

observations made earlier regarding figure 8, It 1is not

easy to explain why this collapse pattern is obtained, because
of the large number of opposing Influences, Collapse at a
cross section of the cavity is favored by increased depth,

and by lower missile speed at the point considered. Decreased
pressure in the cavity due to increased speed of the inflowing
air and, especlally, to growth of the cavity after surface
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closure, has roughly the same collapsing effect over all of
the cavity. It appears probable that point closures at small
values of M are due to the rapid deceleration with consequent
small cavity-generating power for later portions of the
trajectory. Point closures at higher F may be explained by
the following argument. Consider two water entries, identical
except for entry speed, and assume that the effect of gravity
on the trajectories can be neglected. The speeds at two
points (fixed in space) along the trajectories will have the
same ratio for the two launchings if the drag coefficient is
the same, Assume that the collapse time of a cavity cross
section is proportional to the maximum radius, as it is
approximately for a vapor-filled spherical cavity (ref. (9)),
and that the maximum radius is approximately proportional to
the missile speed (ref. (1)) at the time of generation. 1In
going between the two trajectory points the higher-speed entry
will suffer the greater absolute change of speed and
accordingly the collapse time will decrease more. This tends
to move the closure position forward for the higher-speed
entry, as 18 observed.

The model tests under analysis were lighted by special
incandescent bulbs immersed in the water. In a number of
these tests, one to eight of the bulbs broke while the model
was in flight. The motion pictures show that the breakage
occurred immediately after cavity collapse, and generally
after line closures, (Pressure measurements in the water have
recently shown that maximum pressure occurs at cavity collapse.)
Instances of lamp breakage are indicated in figure 17 by
darker symbols. It will be seen that these are grouped about
the region of line closure. This indicates that a pressure
wave of maximum destructive effect, for a given missile shape,
occurred at intermediate entry speeds rather than at the
highest speeds where it might be expected.

Tn the vertical entries of steel spheres reported in
reference (1), point closures always occurred except with
4-inch spheres at low entry speeds, where the collapses were
nearly base closures. AS was mentioned earlier, the effective
mass of a sphere is independent of its diameter and equals
2.28 times the specific gravity. For steel spheres M=17.7,
and F was less than 100 for the entries of reference (1).

No data from the present study contribute to the region below
P=100, but the sphere data appear consistent with figure 17.

The Universal Curves., On figures 18 and 19 are plotted
the unlversal curves ol equation ?u) for S/M versus T/M and
V versus T/M. The lighter lines give the experimental values
for the thirteen rounds of figure 8. The rather large
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scatter 15 not caused by invalidity of the basic assumptions
but principally by fallure to correct the data completely.
The rounds whose curves lie below the universal graphs had
nose-flats which were 0.45 times the missile diameter., The
use of equation (4) in plotting the universal graphs assumes
sharp separation of the flow from the nose flat, and this {is
inherent in equation (1). Water entries of models with nose
flat 0.45 times the body diameter showed some wetting of the
nose behind the flat. The result of this is an increase of
the drag coefficient. An increase of 11 percent in Cp would
be enough to remove most of the scatter shown for these
rounds, and such an increase is entirely reasonable. Strictly,
in the present analysis, the effective nose-flat diameter
should have been based on actual drag coefficients as already
described. Measured drag coefficients were not available and
the effect on cavity development 1s quite small. The data
for Round 169 (fig. 8) lie well above both universal curves
and are undoubtedly in error.

The curves of figures 18 and 19, in addition to furnish-
ing obvious information relating the values of S, T, and V,
serve also in facilitating changes of variables. For example,
data will be glven in figures 25 and 26 to show the
dependence of cavity length on the distance the missile has
traveled. The corresponding relation between cavity length
and time is easily obtained by use of the relation in
figure 18,

ANALYSIS OF CAVITY DIMENSIONS AND EVENTS

In addition to qualitative studies such as those already
described, quantitative analyses were made of a number of
dimensions, times, and other quantities which help to define
the cavity behavior. Some of these are of obvious importance
in cavity analysis; others may have no apparent use. Some of
the latter quantities were analyzed because the results were
needed to facilitate other parts of the study. They have
been included because of possible utility.

Two types of curves will be given, One type 18 the
familiar presentation of the variation of a quantity, such as
the length of the cavity, as a function of time or distance.
On the othe.» hand, single numbers associated with each entry
(such as the maximum volume attained) are presented as
contours; that i1s, as families of lines representing constant
values of the quantity on coordinate axes which are the
Froude number and effective mass,
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Maximum Cavity Diameter. After the water entry of a
missiYe the cavity that 1s generated will, at each instant,
have a maximum diameter at some cross section and figure 8
shows that this is near the water surface until after
pullaway. Also, during the whole of the cavity's development,
there will be some overall maximum value of this diameter

and this also is found quite close to the water surface.

After a section of cavity is generated st any depth and the
wall 18 moving outward, the speed of chis wall decreases
because of the expansion of the geometrical flow pattern.

At or near the water surface, forces other than those due

to this flow have little effect until after the cavity

closes at the surface.

A contour plot of overall maximum cavity diameters in
dimensionless units, given in figure 20, shows that there is
almost no dependence of this maximum on M. This would be
expected. The maximum diameter attained at any cavity cross
section will depend on the missile speed at the time this
portion of cavity is generated, but the subsequent decelera-
tion of the missile (due to smallness of M) affects the
maximum diameter only very indirectly through the effect of
surface closure. PFrom figure 20 the extreme diameter varies
about as the 0.7 power of the PFroude number. The contours
range over diameters between 8 and 35 times the diameter
of the nose flat. Dashed lines on figure 20 and other graphs
are used to indicate that the lines are rough approximations
only.

The variation of maximum cavity diameter with time is
shown in figures 21 and 22 for M=11 and M=69, respectively.
The maximum diameter increases until shortly after surface
closure when it shares in the general cavity contraction.

At all Proude numbers given on figure 21 for Me=ll, s deep
closure ocours. At deep closure the maximum diameters suffer
a discontinuous change from the maximum near the base end
(upper end) of the cavity to the lesser dlameter of the
portion of thLe cavity which remains attached to the missile.
The lower ends of these discontinuous decreases were
inadequately determined and are not shown on figure 21. The
graphs for F=200, M=11 and F=550, M=69 have no discontinuous
portions although there are deep closures, because the portion
of the cavity with maximum diameter remains attached to the
missile at deep closure. Rounds with M=69 and with P greater
than 600 will have deep closures and discontinuities in the
curves for maximum diameter.

Time of Pullaway. PMigure 23 is a contour plot of the
"time of pullaway *hnt is, the time in dimensionless units
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between water impact and the apparent separation of the
cavity from the water surface.

The interpretation of time plots, such as figure 23, 1s
complicated by the variation of the time unit when v, changes
(with F). This may be shown strikingly as follows. Consider
some event which requires the same actual time for all values
of F and M. Such an invariant time is "the time which elapses
while a missile travels a distance numerically equal to the
entry speed, v,, With a constant speed equal to v,." This
is, of course, one fixed time unit, say one aecong. If
contours of this invariant time interval (as defined between
the quotation marks above) were plotted on F-M coordinates,
these contours would be parallel to the M axis, and the
contour time labels would be proportional to the PF-values
at the contours, 1if d 18 constant. In other words, this
invariant time 18 proportional to F in the dimensionless time
units. Accordingly, the variation of time in fixed units may
be regarded as the deviation from proportionality of the
time-Froude number dependence in dimensionless units.

The contour patterns of figures 20 and 23 are very
similar but this is only an indication that the quantities
involved depend strongly on P and only slightly on M. This
behavior will be observed for a number of cavity dimensions
and times.

Pullaway requires that the cavity pressure be below
atmospheric. Surface closure must occur first, and then a
pressure 4drop in the expanding closed cavity. Surface
closure could not be observed in the films of the present
study and the accuracy of the pullaway times is rather low.
For the vertical entry of spheres, reference (1) showed that
the time from water impact to surface closure was constant
(in the dimensionless units) to the accuracy of the deter-
mination. This leads to the conclusion that, for the
conditions of reference (1), the dimensionless depth of the
missile when surface closure occurs would always be the same
if there were no deceleration after water entry.

For M=100, figure 23 gives the relation T, = O.75F - 120.
There is a small increase of the time of pullaaay in seconds
also, as vo alone increases, The data of reference (1) for
the vertical entry of spheres gave a Tp value of approximately
8.4 for M=17.7 and P between 20 and 100. The value of T
increased with F, but conly about 0.05 over the range of

values available., These data appear reasonably consistent
with figure 23,

16




NOLTR 63-264

Cavity Length. Contours of the maximuw: length attained
by the cavity a?fer water entry are given in figure 24, The
pattern 1s similar to that of figure 23, but there 18 an
upturning of the contours at small values of M due to the
greater deceleration suffered by thes» rounds,

At M=100, the maximum length is proporticnal to the
Proude number until the length becomes about 300 nose-flat
diameters in the region where the collapse type changes from
base to point closure. At larger Froude numbers the
dependence 18 again linear, but trie rate of increase of
cavity length is only about half as great as before.

On figures 25 and 26 curves of :avity length versus
distance traveled are given for M=11 and M=69, respectively.
Before pullaway the cavity length equals the distance
traveled and the graphs lie on a U45-degree line, which they
leave at pullaway. It was because of the behavior of the
curves relative to the 45-degree line that distance traveled
was chosen as the absciss® rather than time, in figures
25 and 26. By using the universal curve for S/M versus
T/M on figure 18, tre graphs on figures 25 and 26 can be
converted to curves of cavity length versus time. These are
somewhat similar tc the curves for cavity volume in figures
28 and 29, which will be discussed later,

_ For M=11 (fig. 25) the PFroude numbers range from 200
to 600 and all curves sre similar. Point closures always
occur, As P becomes greater, pullaway is later, and the
cavity length is greater just before closure. The vertical
straight lines on figure 25 represent the discontinuities
in length at closure. The lower ends of these lines should
show the length of the cavity which remains attached to the
missile after point closure, but these are unspecified in
figure 25, The lengths of the cavities which remain attached
were found to vary considerably; many of the deep closures
occurred between the fields of the two cameras and could not
be seen, and many others were difficult to apecifg with
accuracy. The behavior 1s quite different for M=b9 (fig. 26).
Base closures occur at P values below about 500, and the
length curves in this region have no straight portions after
pullaway. At P=550 (and above) a point closure occurs and
the graph on figure 26 is similar to those on figure 25, The
lengths shown on figure 26 for the attached cavity, after
base or point closure, are of low accuracy.

Cavity Volume. The behavior shown in figure 27 for the
maximum vo!u-e attained by the cavity 1s quite similar to
that already seen for maximum length in figure 24, At MN=100
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the volume 1ncHe§ses ae the 2.5 power of F, up to a maximum
volume of 2x10°d- and at higher values of F, drops to about
the square. If there 18 a deep closure, it occurs after the
time of maximum volume and its effects are not seen in the
contour plot,.

The variation of cavity volume with time is shown for
M=11 and M=69 in figures 28 and 29, respectively. All of the
curves given for M=11 have a discontinuous drop in volume at
deep closure. The lower ends of these vertical lines in
figure 28 (the volume of the cavity left attached to the
missile) were not determined with accuracy and are not given
in the figure.

It was mentioned before that curves for cavity length
versus time are somewhat similar to figures 28 and 29, but
there 18 a significant difference when deep closure occurs.
Usually, as shown on figure 25, the cavity length 1s still
increasing when deep closure occurs; but cavity volume has
gone considerably past its peak (fig. 28). This behavior of
the cavity volume was discussed in reference (1). It is
possible for the cavity length to be decreasing when deep
closure occurs. In figure 26 the curve for F=550 shows a
¢losure when the length is at a maximum, This behavior was
found for Round 193 and it will be discussed later in
connection with figure 37.

The variation of volume change at deep closure is
interesting. At M=11 the change increases with Froude number,
The curves for F=200, M=11 (fig. 28) and for P=550, M=69 (fig.
29) are quite similar but the cavity developments are not,.
These curves are approximately those of Round 169 on figure 12
and Round 193 on figure 37, respectively. The cavity of
Round 169 hardly pulls away from the surface before deep
closure, while that of Rounc 193 was moving away from the
surface rapidly when the clousure occurred.

Cavity Collapse. At some point in its history the
cavity sullers a rapid and usually great decrease in length.
This change may be actually discontinuous when a deep closure
occurs, or only quite rapid, as in the case of a base closure,
Usually the cavity is reduced to less than one-third of ites
former length, as may be seen from figure 8,

An attempt was made to obtain a contour map of the ratio
of the lengths of the cavity segments divided by a point
closure. This was not successful because of the difficulties j
in observing deep closure, i
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It 1s useful to be able to apply a single definition to
the specification of the time of the collapse, independent
of its type. The time when the cavity length 1s half the
distance that the missile nas traveled since water erntry was
chosen as suited to this purpose. This occurs very close
to the time of maximum shortening rate, as i1s evident from
figure 8,

Figure 30 gives a contour plot of the time after entry
when the cavity length i1s half the distance traveled. The
dependence on M 18 very slight. At M=100, the time is
linearly dependent on F up to about F=1000, Pigure lla of
reference (1) (NAVORD 1809) shows a linear dependence also
for the vertical entry of spheres.

Contours for the "cavity length which 1s half the

distance traveled” on figure 31, have the usual characteristics.

There 18 a close similarity to the contours for maximum
cavity length on figure 24, At M=100 the dependence on F
is again linear and the length is almost proportional to P,
when P is small.

The Detached Bubble., Collapse of the cavity detaches a
portion ol the cavity and leaves it as a bubble in the wake
in all cases except perfect base closures, Base closures
leave a trail of small bubbles but these trails vary from
heavy continuous clouds of minute bubbles to a light
sprinkling of them, Collapse causes also a compressed cavity
state with pressure above ambient. The residual bubble
usually begins to enlarge immediately after detachment from
the main bubble, Subsequently, it oscillates several times
about its normal size. At first or second maximum its
shape 18 usually roughly spherical. The minimum size is
often obscured by bubble clouds caused by the collapse
instability.

Although the present report is concerned primarily with
the budbble which remains attached to the missile, the
observation of the "residual bubble” and bubble trails in
the wake are of 8o great interest and contain so much
potential information concerning the flow processes, that
some remarks and data will be included here pertaining to
these phenomena. Various collapse behaviors are illustrated
in the outline sketches of figuves 32 to 38. Dashed lines
indicate probable cavity boundaries which are obscured by
bubble clouds. Some areas are cross-hatched to indicate that
they are presumably bubble cloude and not large bubbles.
Although the water-entry was always oblique to the water
surface, the cavities are sketched as if the missile were
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traveling directly up the page. The obliquity of the water
surface 1s shown on a number of the figures by short obligque
lines labeled WL. The line across the pages through the
entry points is simply a reference llne to show the distance
“traveled by the missile. The upper dashed line marksgs the
edge of the frame of the motion picture,

Figures 32 to 34 show three point closures, Figure 32
(Round 208, M=6.4, F=549) shows a large residual bubble and
a very small attached one., These are characteristic of
large values of F and small values of M, respectively.
Figures 33 and 34 show how the size of the residual bubble
decreases as F becomes less,

In figure 35 (Round 148, M=G5, F=672) decreased
deceleration because of larger M results in a much longer
cavity. Cavity outline A shows the point closure occurring
near the edge of the frame and separating off a considerable
amount of the cavity. Further compression has so reduced the
volume at outline B that the cavity 1s lost in the bubble
cloud. At the maxImum of the rebound (outline C) a large
bubble 1s seen again. -

Figure 36 (Round 91, M=95, F=591) shows (outline A) a
long narrow cavity segment cut off by a line closure., The
cavity disappears in outline B, and becomes rather large
again in rebound at outline C.

Figure 37 (Round 193) 1s similar to figure 36 but is
included to show a frequently observed phenomenon. Initlally
the cavity pulls away from the water surface and moves rather
rapidly with all the appearance of a base closure. OQOutllne
A shows, however, that a point cloaure occurred tefore the
base reached the point of the closure. The cavity disappears
in outline B and reappears in C, as before.

Pigure 38 (Round QL) shows an almost perfect line
closure at the base. A heavy bubble-cloud wake is left but
there 18 no evidence of any discrete bubbles,

Rounds 180 and 190 on figures 13 and 15 are typical
examples of base closures,.

Contours showing volumes of the residual bubble are
given in figure 39. The lower dashed line shows the
approximate position of the boundary of the base-closure area
below which no measurable bubbles are lert behind., When the
base closure is very rapid and approaches a line closure,
one or more small bubbles usually show up on the rebound of
the wake. These generally mark places where the missile tai!l
struck the cavity wall and deformed it slightly.
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Cavity Prassura., During the data analysis 23 slosed
cavities were observed whose shapes seemed to be changing
very slowly and which might therefore he suitable for the
estimation of cevity pressursz. Rather surprisingly, they
were Jdisiributed ovar the full rarges of values of P and M.
Ambient pressures at these cavities ranged frcm 17.3 to
22.4 psi, corresponding to depths of 6 to 18 feet delow the
water surface. 1In general, the depth of the cavities was
greater as the value of P was increased, esince higher values
of P usually mecant that greater distances had to be traversed
before the steady cavity phase was reached. On the otner
hand, there was little change of .axbient pressure witn M.

The préssure contour plot is given in figure 40. The
rather low acocuracy of the plot is indicated by the fact that
only the two contours at highest cavity pressures (and lowest
values of M) were deemed definite eriough to be represented
by so0lid lines. These were better defined because the large
deceleration at low values of M results in an earlier
"almost-steady” phase. Cavities with M=11 had an average
o of 0.14 and no cavities at higher M values had a O value
greater than 0.085. This means that the cavities at M=11
were smaller. Also the instantaneous missile speed increased
with M, from an average of 32 feet per second at M=1]1 to
168 feet per second at the higher N values,

A comparison of cavity-pressure values odbtained from the
cavity diameter with those obtained from the cavity length,
showed excellent agreement for M=11 and considerably poorer
agreement for larger M values. Values plotted preparetory
to drawing pressure contours were consideredly more
consistent when the pressures were obtained from cavity
volumes, than when the means of thes values obtained from
diameter and length were used.

The pressure contours of figure 40 will certainly depend
on missile sise. A missile with the same values of F and N
as one of the models of the progrem deing analyzed, but with
10 times the diameter, might be expected to have "almost-
steady” cavitios at 10 times the depth; that 1s, at 60 to
180 feet where the ambient pressures would de 2 to & times as
great as for the smaller models.

The change of cavitation number with change of scale
may be relatively small.
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RECAFITULATION AND CONCLUSIONS

In Chapter 1 it was shown that one may reasonably erpect
tc correlate water-entry cavity data with only three
experimental parameters: a Proude number, an effective mass,
and the &ngle of entry. 1In Chapter 2 this correlation was
applied to motion-pictur2 re-ords of a8 water-entry model
program. The result was a number of curves and contour plots
showing how each of various cavity dimensions or event times
depend on the experimenta}) parameters. In addition, estimates
were made of cavity pressures by a method described in
Chapter 1.

It 18 felt that the data presented in this report serve
several purposes:

a. they indicate that the titeory 1is reasonably
applicable to experimental data,

b. the lack of obvious contradictions lends credence
to the theory,

¢. they show that under the limitations set down {t
appears possible to presen’ a systematic set of data for the
water-entry cavity, and

d. the cavity data as prermented are avallable to assist
in predicting hydroballistis behavioirr after water entry.

On the other hand, tihe following limitations of the
content of this report should be recogniced:

a. the application to experimental data has not verified
the correlation theory because of limitations on the expori-
mental conditions. For example, all missiles with M=69 had
subatantially the same nose-flat diaxzeter (with 4/D=0.5)
and the same missile mass. Data are needed over several
values of d with valuea of mass chosen sc that M {s unchanged,

b. the data presented ars leas accurate than that which
could be odtainsd from &n experimental progres designed
specifically to secure these dats,

¢. data do not extend over the whole region of practical
importance. In fact, the most important region for missiles
1s prodably for P (200, and almost ro data for this region
are given in this report,

d. present dats generally extend only to about the time
of cavity collapse; that is, to deep :losure or base closure,
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There is great need for data throughout the later stage during
which the small cavity is undergoing attrition.

It 1s recommended that a {urther program be carried out
to remove these limitationa and to verify the correlation
theory presented in this report.
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WATER ENTRY OF RIGHT CYLINDER
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FIG. 2 CAVITY WITH "ALMOST STEADY"FLOW
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FIG.5 GUN MOUNT
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